Arabidopsis Mutants Lacking Blue Light-Dependent Inhibition of Hypocotyl Elongation.
نویسندگان
چکیده
We have isolated a new class of photomorphogenic mutants in Arabidopsis. Hypocotyl elongation is not inhibited in the mutant seedlings by continuous blue light but is inhibited by far red light, indicating that these mutations are phenotypically different from the previously isolated long hypocotyl (hy) mutants. Complementation analysis indicated that recessive nuclear mutations at three genetic loci, designated blu1, blu2, and blu3, can result in the blu mutant phenotype and that these mutants are genetically distinct from other long hypocotyl mutants. The BLU genes appear to be important only during seedling development because the blu mutations have little effect on mature plants, whereas hypocotyl elongation and cotyledon expansion are altered in seedlings. The genetic separation of the blue and far red sensitivities of light-induced hypocotyl inhibition in the blu and hy mutants demonstrates that two photosensory systems function in this response.
منابع مشابه
Genetic separation of phototropism and blue light inhibition of stem elongation.
Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis...
متن کاملArabídopsis Mutants Lacking Blue Light-Dependent lnhibition of Hypocotyl Elongation
We have isolated a new class of photomorphogenic mutants in Arabidopsis. Hypocotyl elongation is not inhibited in the mutant seedlings by continuous blue light but is inhibited by far red light, indicating that these mutations are phenotypically different from the previously isolated long hypocotyl (hy) mutants. Complementation analysis indicated that recessive nuclear mutations at three geneti...
متن کاملAuxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis.
Many auxin responses are dependent on redistribution and/or polar transport of indoleacetic acid. Polar transport of auxin can be inhibited through the application of phytotropins such as 1-naphthylphthalamic acid (NPA). When Arabidopsis thaliana seedlings were grown in the light on medium containing 1.0 microM NPA, hypocotyl and root elongation and gravitropism were strongly inhibited. When gr...
متن کاملProcuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings.
Plant morphogenesis is dependent on a tight control of cell division and expansion. Cell elongation during post-embryonic hypocotyl growth is under the control of a light-regulated developmental switch. Light is generally believed to exert its effects on hypocotyl elongation through a phytochrome-and blue-light receptor-mediated inhibitory action on a so far unknown cell elongation mechanism. W...
متن کاملBlue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1.
Cryptochromes are photolyase-like blue/UV-A light receptors that regulate various light responses in animals and plants. Arabidopsis cryptochrome 1 (cry1) is the major photoreceptor mediating blue light inhibition of hypocotyl elongation. The initial photochemistry underlying cryptochrome function and regulation remain poorly understood. We report here a study of the blue light-dependent phosph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 3 7 شماره
صفحات -
تاریخ انتشار 1991